Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 168(3): 185-204, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308495

RESUMO

Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Morfina/farmacologia , Comportamento Exploratório , HIV-1/metabolismo , Dopamina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Camundongos Transgênicos , Analgésicos Opioides/farmacologia , Ácido Homovanílico , Neurotransmissores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
2.
J Neurovirol ; 30(1): 1-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280928

RESUMO

Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fentanila , HIV-1 , Camundongos Transgênicos , Doenças Neuroinflamatórias , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Camundongos , Fentanila/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia , Transtornos Relacionados ao Uso de Opioides/metabolismo
3.
Viruses ; 15(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992299

RESUMO

Opioid use disorder (OUD) and HIV are comorbid epidemics that can increase depression. HIV and the viral protein Tat can directly induce neuronal injury within reward and emotionality brain circuitry, including the prefrontal cortex (PFC). Such damage involves both excitotoxic mechanisms and more indirect pathways through neuroinflammation, both of which can be worsened by opioid co-exposure. To assess whether excitotoxicity and/or neuroinflammation might drive depressive behaviors in persons infected with HIV (PWH) and those who use opioids, male mice were exposed to HIV-1 Tat for eight weeks, given escalating doses of morphine during the last two weeks, and assessed for depressive-like behavior. Tat expression decreased sucrose consumption and adaptability, whereas morphine administration increased chow consumption and exacerbated Tat-induced decreases in nesting and burrowing-activities associated with well-being. Across all treatment groups, depressive-like behavior correlated with increased proinflammatory cytokines in the PFC. Nevertheless, supporting the theory that innate immune responses adapt to chronic Tat exposure, most proinflammatory cytokines were unaffected by Tat or morphine. Further, Tat increased PFC levels of the anti-inflammatory cytokine IL-10, which were exacerbated by morphine administration. Tat, but not morphine, decreased dendritic spine density on layer V pyramidal neurons in the anterior cingulate. Together, our findings suggest that HIV-1 Tat and morphine differentially induce depressive-like behaviors associated with increased neuroinflammation, synaptic losses, and immune fatigue within the PFC.


Assuntos
Espinhas Dendríticas , Depressão , Imunidade Inata , Morfina , Córtex Pré-Frontal , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Depressão/induzido quimicamente , Depressão/imunologia , Córtex Pré-Frontal/imunologia , Espinhas Dendríticas/patologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/efeitos adversos , Morfina/efeitos adversos , Masculino , Animais , Camundongos , Comportamento Animal , Citocinas/imunologia , Interleucina-10/imunologia , Doenças Neuroinflamatórias , Camundongos Transgênicos , Transtornos Relacionados ao Uso de Opioides , Infecções por HIV , Analgésicos Opioides/efeitos adversos
4.
ASN Neuro ; 15: 17590914231158218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890725

RESUMO

SUMMARY STATEMENT: HIV/HIV-1 Tat and morphine independently increase pathologic phosphorylation of TAR DNA binding protein 43 in the striatum. HIV- and opioid-induced pathologic phosphorylation of TAR DNA binding protein 43 may involve enhanced CK2 activity and protein levels.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Fosforilação , Caseína Quinase II/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteínas de Ligação a DNA , HIV-1/metabolismo , Gânglios da Base/metabolismo , Ligação Proteica
5.
J Neurovirol ; 29(1): 15-26, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853588

RESUMO

HIV-associated neurocognitive disorders (HAND) remain pervasive even with increased efficacy/use of antiretroviral therapies. Opioid use/abuse among HIV + individuals is documented to exacerbate CNS deficits. White matter (WM) alterations, including myelin pallor, and volume/structural alterations detected by diffusion tensor imaging are common observations in HIV + individuals, and studies in non-human primates suggest that WM may harbor virus. Using transgenic mice that express the HIV-1 Tat protein, we examined in vivo effects of 2-6 weeks of Tat and morphine exposure on WM using genomic and biochemical methods. RNA sequencing of striatal tissue at 2 weeks revealed robust changes in mRNAs associated with oligodendrocyte precursor populations and myelin integrity, including those for transferrin, the atypical oligodendrocyte marker N-myc downstream regulated 1 (Ndrg1), and myelin regulatory factor (Myrf/Mrf), an oligodendrocyte-specific transcription factor with a significant role in oligodendrocyte differentiation/maturation. Western blots conducted after 6-weeks exposure in 3 brain regions (striatum, corpus callosum, pre-frontal cortex) revealed regional differences in the effect of Tat and morphine on Myrf levels, and on levels of myelin basic protein (MBP), whose transcription is regulated by Myrf. Responses included individual and interactive effects. Although baseline and post-treatment levels of Myrf and MBP differed between brain regions, post-treatment MBP levels in striatum and pre-frontal cortex were compatible with changes in Myrf activity. Additionally, the Myrf regulatory ubiquitin ligase Fbxw7 was identified as a novel target in our model. These results suggest that Myrf and Fbxw7 contribute to altered myelin gene regulation in HIV.


Assuntos
Infecções por HIV , HIV-1 , Animais , Camundongos , Imagem de Tensor de Difusão , Proteína 7 com Repetições F-Box-WD/metabolismo , Lobo Frontal/metabolismo , HIV-1/metabolismo , Camundongos Transgênicos , Morfina , Fatores de Transcrição/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
6.
Cell Mol Neurobiol ; 43(3): 1105-1127, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35695980

RESUMO

The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.


Assuntos
Dopamina , HIV-1 , Animais , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Corpo Estriado/patologia , HIV-1/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfina/farmacologia , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo
7.
Curr Opin Neurobiol ; 78: 102653, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584655

RESUMO

Opioid use disorder (OUD) has become a national crisis and contributes to the spread of human immunodeficiency virus (HIV) infection. Emerging evidence and advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal that opioids per se can directly exacerbate the pathophysiology of neuroHIV. Despite substantial inroads, the impact of OUD on the severity, development, and prognosis of neuroHIV and HIV-associated neurocognitive disorders is not fully understood. In this review, we explore current evidence that OUD and neuroHIV interact to accelerate cognitive deficits and enhance the neurodegenerative changes typically seen with aging, through their effects on neuroinflammation. We suggest new thoughts on the processes that may underlie accelerated brain aging, including dysregulation of neuronal inhibition, and highlight findings suggesting that opioids, through actions at the µ-opioid receptor, interact with HIV in the central nervous system to promote unique structural and functional comorbid deficits not seen in either OUD or neuroHIV alone.


Assuntos
Infecções por HIV , Transtornos Relacionados ao Uso de Opioides , Humanos , Cloretos , Mediadores da Inflamação , Infecções por HIV/complicações , Encéfalo , Analgésicos Opioides/farmacologia
8.
Exp Neurol ; 358: 114226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096180

RESUMO

HIV-associated sensory neuropathies (HIV-SN) are prevalent in >50% of patients aged over 45 years many of which report moderate to severe chronic pain. Previous preclinical studies have investigated the mechanisms by which HIV-1 causes sensory neuropathies and pain-like behaviors. The aim of the present study is to delineate the role of chronic HIV-1 trans-activator of transcription protein (Tat) exposure in the development of neuropathy in mice. The temporal effects of conditional Tat expression on the development of hypersensitivity to mechanical (von Frey filaments) and thermal (heat or cold) stimuli were tested in male and female mice that transgenically expressed HIV-1 Tat in a doxycycline-inducible manner. Inducing Tat expression produced an allodynic response to mechanical or cold (but not heat) stimuli that respectively persisted for at least 23-weeks (mechanical hypersensitivity) or at least 8-weeks (cold hypersensitivity). Both allodynic states were greater in magnitude among females, compared to males, and mechanical increased hypersensitivity progressively in females over time. Acute morphine or gabapentin treatment partly attenuated allodynia in males, but not females. Irrespective of sex, Tat reduced intraepidermal nerve fiber density, the mean amplitude of sensory nerve action potentials (but not conductance), engagement in some pain-related ethological behaviors (cage-hanging and rearing), and down-regulated PPAR-α gene expression in lumbar spinal cord while upregulating TNF-α expression in dorsal root ganglion. Taken together, these data reveal fundamental sex differences in mechanical and cold hypersensitivity in response to Tat and demonstrate the intractable nature in female mice to current therapeutics. Understanding the role of Tat in these pathologies may aid the design of future therapies aimed at mitigating the peripheral sensory neuropathies that accompany neuroHIV.


Assuntos
Infecções por HIV , HIV-1 , Doenças do Sistema Nervoso Periférico , Animais , Síndromes Periódicas Associadas à Criopirina , Doxiciclina , Feminino , Gabapentina , Produtos do Gene tat , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Morfina/farmacologia , Dor , Receptores Ativados por Proliferador de Peroxissomo , Caracteres Sexuais , Fator de Necrose Tumoral alfa
9.
Neurosci Lett ; 788: 136852, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36028004

RESUMO

Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.


Assuntos
Infecções por HIV , HIV-1 , Transtornos Relacionados ao Uso de Opioides , Animais , Corpo Estriado/metabolismo , Dextranos , Fluoresceínas , HIV-1/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Morfina/farmacologia , Ácidos Sulfônicos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
10.
Front Neurosci ; 16: 804774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600626

RESUMO

Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-ß (Aß) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aß monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.

11.
Neurosci Lett ; 782: 136688, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35595189

RESUMO

Nearly one-third of persons infected with HIV-1 (PWH) develop HIV-associated neurocognitive disorders (HAND), which can be exacerbated by exposure to opioids. The impact of opioids on HIV-induced alterations in neuronal plasticity is less well understood. Both morphine exposure and HIV have been shown to disrupt synaptic growth and stability in the hippocampus suggesting a potential site of convergence for their deleterious effects. In the present study, we examined the density of dendritic spines in CA1 and CA3 pyramidal neurons, and granule neurons within the dentate gyrus representing the hippocampal trisynaptic pathway after short-term exposure to the HIV transactivator of transcription (Tat) protein and morphine. We exposed inducible male, HIV-1 Tat transgenic mice to escalating doses of morphine (10-40 mg/kg, b.i.d.) and examined synaptodendritic structure in Golgi-impregnated hippocampal neurons. HIV-1 Tat, but not morphine, systematically reduced the density of apical, but not basilar, dendrites of CA1 and CA3 pyramidal neurons, and granule neuronal apical dendrites, suggesting the coordinated loss of specific synaptic interconnections throughout the hippocampal trisynaptic pathway.


Assuntos
Espinhas Dendríticas , HIV-1 , Analgésicos Opioides/farmacologia , Animais , Dendritos/metabolismo , Hipocampo , Masculino , Camundongos , Camundongos Transgênicos , Morfina/metabolismo , Morfina/farmacologia
12.
Am J Physiol Cell Physiol ; 322(3): C395-C409, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35080921

RESUMO

Dynamic chloride (Cl-) regulation is critical for synaptic inhibition. In mature neurons, Cl- influx and extrusion are primarily controlled by ligand-gated anion channels (GABAA and glycine receptors) and the potassium chloride cotransporter K+-Cl- cotransporter 2 (KCC2), respectively. Here, we report for the first time, to our knowledge, a presence of a new source of Cl- influx in striatal neurons with properties similar to chloride voltage-gated channel 1 (ClC-1). Using whole cell patch-clamp recordings, we detected an outwardly rectifying voltage-dependent current that was impermeable to the large anion methanesulfonate (MsO-). The anionic current was sensitive to the ClC-1 inhibitor 9-anthracenecarboxylic acid (9-AC) and the nonspecific blocker phloretin. The mean fractions of anionic current inhibition by MsO-, 9-AC, and phloretin were not significantly different, indicating that anionic current was caused by active ClC-1-like channels. In addition, we found that Cl- current was not sensitive to the transmembrane protein 16A (TMEM16A; Ano1) inhibitor Ani9 and that the outward Cl- rectification was preserved even at a very high intracellular Ca2+ concentration (2 mM), indicating that TMEM16B (Ano2) did not contribute to the total current. Western blotting and immunohistochemical analyses confirmed the presence of ClC-1 channels in the striatum mainly localized to the somata of striatal neurons. Finally, we found that 9-AC decreased action potential firing frequencies and increased excitability in medium spiny neurons (MSNs) expressing dopamine type 1 (D1) and type 2 (D2) receptors in the brain slices, respectively. We conclude that ClC-1-like channels are preferentially located at the somata of MSNs, are functional, and can modulate neuronal excitability.


Assuntos
Cloretos , Corpo Estriado , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Corpo Estriado/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Floretina/metabolismo , Floretina/farmacologia , Receptores de Dopamina D2/metabolismo
13.
ASN Neuro ; 13: 17590914211022089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34445881

RESUMO

People infected with HIV (PWH) are highly susceptible to striatal and hippocampal damage. Motor and memory impairments are common among these patients, likely as behavioral manifestations of damage to these brain regions. GABAergic dysfunction from HIV infection and viral proteins such as transactivator of transcription (Tat) have been well documented. We recently demonstrated that the neuron specific Cl- extruder, K+ Cl- cotransporter 2 (KCC2), is diminished after exposure to HIV proteins, including Tat, resulting in disrupted GABAAR-mediated hyperpolarization and inhibition. Here, we utilized doxycycline (DOX)-inducible, GFAP-driven HIV-1 Tat transgenic mice to further explore this phenomenon. After two weeks of Tat expression, we found no changes in hippocampal KCC2 levels, but a significant decrease in the striatum that was associated with hyperlocomotion in the open field assay. We were able to restore KCC2 activity and baseline locomotion with the KCC2 enhancer, CLP290. Additionally, we found that CLP290, whose mechanism of action has yet to be described, acts to restore phosphorylation of serine 940 resulting in increased KCC2 membrane localization. We also examined neuronal subpopulation contributions to the noted effects and found significant differences. Dopamine D2 receptor-expressing medium spiny neurons (MSNs) were selectively vulnerable to Tat-induced KCC2 loss, with no changes observed in dopamine D1 receptor-expressing MSNs. These results suggest that disinhibition/diminished hyperpolarization of dopamine D2 receptor-expressing MSNs can manifest as increased locomotion in this context. They further suggest that KCC2 activity might be a therapeutic target to alleviate motor disturbances related to HIV.


Assuntos
Infecções por HIV , Receptores de Dopamina D2 , Simportadores , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Corpo Estriado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transativadores
14.
Horm Behav ; 133: 105008, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34171549

RESUMO

Many persons infected with HIV-1 (PWH) and opioid-dependent individuals experience deficits in sociability that interfere with daily living. Sociability is regulated by the prefrontal cortico-hippocampal-amygdalar circuit. Within this circuit HIV-1 trans-activator of transcription (HIV-1 Tat) and opioids can increase dendritic pathology and alter neuronal firing. Changes in sociability are also associated with dysregulation of hypothalamic neuropeptides such as oxytocin or corticotropin releasing factor (CRF) in the prefrontal cortico-hippocampal-amygdalar circuit. Accordingly, we hypothesized that the interaction of HIV-1 Tat and morphine would impair inter-male social interactions and disrupt oxytocin and CRF within the PFC and associated circuitry. Male mice were exposed to HIV-1 Tat for 8 weeks and administered saline or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of HIV-1 Tat exposure. Tat attenuated aggressive interactions with an unknown intruder, whereas morphine decreased both non-aggressive and aggressive social interactions in the resident-intruder test. However, there was no effect of Tat or morphine on non-reciprocal interactions in the social interaction and novelty tests. Tat, but not morphine, decreased oxytocin levels in the PFC and amygdala, whereas both Tat and morphine decreased the percentage of oxytocin-immunoreactive neurons in the hypothalamic paraventricular nucleus (PVN). In Tat(+) or morphine-exposed mice, regional levels of CRF and oxytocin correlated with alterations in behavior in the social interaction and novelty tests. Overall, decreased expression of oxytocin in the prefrontal cortico-hippocampal-amygdalar circuit is associated with morphine- and HIV-Tat-induced deficits in social behavior.


Assuntos
HIV-1 , Morfina , Tonsila do Cerebelo/metabolismo , Animais , Masculino , Camundongos , Morfina/farmacologia , Ocitocina , Núcleo Hipotalâmico Paraventricular/metabolismo , Córtex Pré-Frontal/metabolismo , Interação Social , Transativadores , Produtos do Gene tat do Vírus da Imunodeficiência Humana
15.
J Med Chem ; 64(11): 7702-7723, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027668

RESUMO

Crystal structures of ligand-bound G-protein-coupled receptors provide tangible templates for rationally designing molecular probes. Herein, we report the structure-based design, chemical synthesis, and biological investigations of bivalent ligands targeting putative mu opioid receptor C-C motif chemokine ligand 5 (MOR-CCR5) heterodimers. The bivalent ligand VZMC013 possessed nanomolar level binding affinities for both the MOR and CCR5, inhibited CCL5-stimulated calcium mobilization, and remarkably improved anti-HIV-1BaL activity over previously reported bivalent ligands. VZMC013 inhibited viral infection in TZM-bl cells coexpressing CCR5 and MOR to a greater degree than cells expressing CCR5 alone. Furthermore, VZMC013 blocked human immunodeficiency virus (HIV)-1 entry in peripheral blood mononuclear cells (PBMC) cells in a concentration-dependent manner and inhibited opioid-accelerated HIV-1 entry more effectively in phytohemagglutinin-stimulated PBMC cells than in the absence of opioids. A three-dimensional molecular model of VZMC013 binding to the MOR-CCR5 heterodimer complex is constructed to elucidate its mechanism of action. VZMC013 is a potent chemical probe targeting MOR-CCR5 heterodimers and may serve as a pharmacological agent to inhibit opioid-exacerbated HIV-1 entry.


Assuntos
Desenho de Fármacos , Ligantes , Receptores CCR5/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Dimerização , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Maraviroc/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naltrexona/química , Fito-Hemaglutininas/farmacologia , Ligação Proteica , Receptores CCR5/química , Receptores Opioides mu/química , Internalização do Vírus/efeitos dos fármacos
16.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33782102

RESUMO

About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9-14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure.


Assuntos
HIV-1 , Região CA1 Hipocampal/metabolismo , HIV-1/metabolismo , Hipocampo/metabolismo , Morfina/farmacologia , Células Piramidais/metabolismo , Aprendizagem Espacial , Transativadores , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
17.
Neurosci Lett ; 741: 135502, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33202259

RESUMO

Opiate abuse is prevalent among HIV-infected individuals and may exacerbate HIV-associated age-related neurocognitive disorders. However, the extent to which HIV and opiates converge to accelerate pathological traits indicative of brain aging remains unknown. The pathological phospho-isotypes of tau (pSer396, pSer404, pThr205, pSer202, and pThr181) and the tau kinases GSK3ß and CDK5/p35 were explored in the striatum, hippocampus, and prefrontal cortex of inducible male and female HIV-1 Tat-transgenic mice, with some receiving escalating doses of morphine for 2 weeks. In the striatum of male mice, pSer396 was increased by co-exposure to morphine and Tat as compared to all other groups. Striatal pSer404 and pThr205 were increased by Tat alone, while pSer202 and pThr181 were unchanged. A comparison between Tat-transgenic female and male mice revealed disparate outcomes for pThr205. No other sex-related changes to tau phosphorylation were observed. In the hippocampus, Tat increased pSer396, while other phosphorylation sites were unchanged and pSer202 was not detected. In the prefrontal cortex, morphine increased pSer396 levels, which were unaffected by Tat, while other phosphorylation sites were unaffected. Assessment of tau kinases revealed no changes to striatal GSK3ß (phosphorylated or total) or the total CDK5 levels. Striatal levels of phosphorylated CDK5 and p35, the activator of CDK5, were increased by Tat and with morphine co-exposure, respectively. P35 levels positively correlated with those of pSer396 with Tat and morphine co-exposure. The results reveal region-specific hyperphosphorylation of tau induced by exposure to morphine, Tat, and unique morphine and Tat interactions.


Assuntos
Analgésicos Opioides/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Morfina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Proteínas tau/metabolismo , Analgésicos Opioides/administração & dosagem , Animais , Feminino , Humanos , Masculino , Camundongos Transgênicos , Morfina/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
18.
J Neuroinflammation ; 17(1): 345, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208151

RESUMO

BACKGROUND: Human immunodeficiency virus type-1 (HIV-1) and opiates cause long-term inflammatory insult to the central nervous system (CNS) and worsen disease progression and HIV-1-related neuropathology. The combination of these proinflammatory factors reflects a devastating problem as opioids have high abuse liability and continue to be prescribed for certain patients experiencing HIV-1-related pain. METHODS: Here, we examined the impact of chronic (3-month) HIV-1 transactivator of transcription (Tat) exposure to short-term (8-day), escalating morphine in HIV-1 Tat transgenic mice that express the HIV-1 Tat protein in a GFAP promoter-regulated, doxycycline (DOX)-inducible manner. In addition to assessing morphine-induced tolerance in nociceptive responses organized at spinal (i.e., tail-flick) and supraspinal (i.e., hot-plate) levels, we evaluated neuroinflammation via positron emission tomography (PET) imaging using the [18F]-PBR111 ligand, immunohistochemistry, and cytokine analyses. Further, we examined endocannabinoid (eCB) levels, related non-eCB lipids, and amino acids via mass spectrometry.  RESULTS: Tat-expressing [Tat(+)] transgenic mice displayed antinociceptive tolerance in the tail withdrawal and hot-plate assays compared to control mice lacking Tat [Tat(-)]. This tolerance was accompanied by morphine-dependent increases in Iba-1 ± 3-nitrotryosine immunoreactive microglia, and alterations in pro- and anti-inflammatory cytokines, and chemokines in the spinal cord and striatum, while increases in neuroinflammation were absent by PET imaging of [18F]-PBR111 uptake. Tat and morphine exposure differentially affected eCB levels, non-eCB lipids, and specific amino acids in a region-dependent manner. In the striatum, non-eCB lipids were significantly increased by short-term, escalating morphine exposure, including peroxisome proliferator activator receptor alpha (PPAR-α) ligands N-oleoyl ethanolamide (OEA) and N-palmitoyl ethanolamide (PEA), as well as the amino acids phenylalanine and proline. In the spinal cord, Tat exposure increased amino acids leucine and valine, while morphine decreased levels of tyrosine and valine but did not affect eCBs or non-eCB lipids. CONCLUSION: Overall results demonstrate that 3 months of Tat exposure increased morphine tolerance and potentially innate immune tolerance evidenced by reductions in specific cytokines (e.g., IL-1α, IL-12p40) and microglial reactivity. In contrast, short-term, escalating morphine exposure acted as a secondary stressor revealing an allostatic shift in CNS baseline inflammatory responsiveness from sustained Tat exposure.


Assuntos
Aminoácidos/metabolismo , Endocanabinoides/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Morfina/administração & dosagem , Neuroproteção/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Analgésicos Opioides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Mediadores da Inflamação/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroproteção/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
19.
ACS Med Chem Lett ; 11(11): 2318-2324, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33214847

RESUMO

A bivalent compound 1a featuring both a mu opioid receptor (MOR) and a CXCR4 antagonist pharmacophore (naltrexone and IT1t) was designed and synthesized. Further binding and functional studies demonstrated 1a acting as a MOR and a CXCR4 dual antagonist with reasonable binding affinities at both receptors. Furthermore, compound 1a seemed more effective than a combination of IT1t and naltrexone in inhibiting HIV entry at the presence of morphine. Additional molecular modeling results suggested that 1a may bind with the putative MOR-CXCR4 heterodimer to induce its anti-HIV activity. Collectively, bivalent ligand 1a may serve as a promising lead to develop chemical probes targeting the putative MOR-CXCR4 heterodimer in comprehending opioid exacerbated HIV-1 invasion.

20.
Artigo em Inglês | MEDLINE | ID: mdl-33083793

RESUMO

HIV-1 selectively disrupts neuronal integrity within specific brain regions, reflecting differences in viral tropism and/or the regional differences in the vulnerability of distinct neuronal subpopulations within the CNS. Deficits in prefrontal cortex (PFC)-mediated executive function and the resultant loss of behavioral control are a particularly debilitating consequence of neuroHIV. To explore how HIV-1 disrupts executive function, we investigated the effects of 48 h, 2 and/or 8 weeks of HIV-1 Tat exposure on behavioral control, synaptic connectivity, and neuroimmune function in the anterior cingulate cortex (ACC) and associated cortico-basal ganglia (BG)-thalamocortical circuitry in adult, Tat transgenic male mice. HIV-1 Tat exposure increased novelty-exploration in response to novel food, flavor, and environmental stimuli, suggesting that Tat triggers increased novelty-exploration in situations of competing motivation (e.g., drive to feed or explore vs. fear of novel, brightly lit open areas). Furthermore, Tat induced adaptability in response to an environmental stressor and pre-attentive filtering deficits. The behavioral insufficiencies coincided with decreases in the inhibitory pre- and post-synaptic proteins, synaptotagmin 2 and gephyrin, respectively, in the ACC, and alterations in specific pro- and anti-inflammatory cytokines out of 23 assayed. The interaction of Tat exposure and the resultant time-dependent, selective alterations in CCL4, CXCL1, IL-12p40, and IL-17A levels in the PFC predicted significant decreases in adaptability. Tat decreased dendritic spine density and cortical VGLUT1 inputs, while increasing IL-1ß, IL-6, CCL5, and CCL11 in the striatum. Alternatively, IL-1α, CCL5, and IL-13 were decreased in the mediodorsal thalamus despite the absence of synaptic changes. Thus, HIV-1 Tat appears to uniquely and systematically disrupt immune regulation and the inhibitory and excitatory synaptic balance throughout the ACC-BG-thalamocortical circuitry resulting in a loss of behavioral control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...